SIEGE: A Semantics-Guided Safety Enhancement Framework for AI-enabled Cyber-Physical SystemsCyber-Physical Systems (CPSs) have been widely adopted in various industry domains to support many important tasks that impact our daily lives, such as automotive vehicles, robotics manufacturing, and energy systems. As Artificial Intelligence (AI) has demonstrated its promising abilities in diverse tasks like decision-making, prediction, and optimization, a growing number of CPSs adopt AI components in the loop to further extend their efficiency and performance. However, these modern AI-enabled CPSs have to tackle pivotal problems that the AI-enabled control systems might need to compensate the balance across multiple operation requirements and avoid possible defections in advance to safeguard human lives and properties. Modular redundancy and ensemble method are two widely adopted solutions in the traditional CPSs and AI communities to enhance the functionality and flexibility of a system. Nevertheless, there is a lack of deep understanding of the effectiveness of such ensemble design on AI-CPSs across diverse industrial applications. Considering the complexity of AI-CPSs, existing ensemble methods fall short of handling such huge state space and sophisticated system dynamics. Furthermore, an ideal control solution should consider the multiple system specifications in real-time and avoid erroneous behaviors beforehand. Such that, a new specification-oriented ensemble control system is of urgent need for AI-CPSs.
In this paper, we propose SIEGE, a semantics-guided ensemble control framework to initiate an early exploratory study of ensemble methods on AI-CPSs and aim to construct an efficient, robust, and reliable control solution for multi-tasks AI-CPSs. We first utilize a semantic-based abstraction to decompose the large state space, capture the ongoing system status and predict future conditions in terms of the satisfaction of specifications. We propose a series of new semantics-aware ensemble strategies and an end-to-end Deep Reinforcement Learning (DRL) hierarchical ensemble method to improve the flexibility and reliability of the control systems. Our large-scale, comprehensive evaluations over five subject CPSs show that 1) the semantics abstraction can efficiently narrow the large state space and predict the semantics of incoming states, 2) our semantics-guided methods outperform state-of-the-art individual controllers and traditional ensemble methods, and 3) the DRL hierarchical ensemble approach shows promising capabilities to deliver a more robust, efficient, and safety-assured control system. | Publication | 2023-06-06 | Jiayang Song, Xuan Xie, Lei Ma |
ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon Sequential Task PlanningMotivated by the substantial achievements observed in Large Language Models (LLMs) in the field of natural language processing, recent research has commenced investigations into the application of LLMs for complex, long-horizon sequential task planning challenges in robotics. LLMs are advantageous in offering the potential to enhance the generalizability as task-agnostic planners and facilitate flexible interaction between human instructors and planning systems. However, task plans generated by LLMs often lack feasibility and correctness. To address this challenge, we introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process. The framework operates through three sequential steps: preprocessing, planning, and iterative self-refinement. During preprocessing, an LLM translator is employed to convert natural language input into a Planning Domain Definition Language (PDDL) formulation. In the planning phase, an LLM planner formulates an initial plan, which is then assessed and refined in the iterative self-refinement step by using a validator. We examine the performance of ISR-LLM across three distinct planning domains. The results show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners. Moreover, it also preserves the broad applicability and generalizability of working with natural language instructions. University of Alberta | Publication | 2024-01-29 | Zhehua Zhou, Jiayang Song, "Kunpeng Yao", Shu, Z., Lei Ma |
Self-Refined Large Language Model as Automated Reward Function Designer for Deep Reinforcement Learning in RoboticsAlthough Deep Reinforcement Learning (DRL) has achieved notable success in numerous robotic applications, designing a high-performing reward function remains a challenging task that often requires substantial manual input. Recently, Large Language Models (LLMs) have been extensively adopted to address tasks demanding in-depth common-sense knowledge, such as reasoning and planning. Recognizing that reward function design is also inherently linked to such knowledge, LLM offers a promising potential in this context. Motivated by this, we propose in this work a novel LLM framework with a self-refinement mechanism for automated reward function design. The framework commences with the LLM formulating an initial reward function based on natural language inputs. Then, the performance of the reward function is assessed, and the results are presented back to the LLM for guiding its self-refinement process. We examine the performance of our proposed framework through a variety of continuous robotic control tasks across three diverse robotic systems. The results indicate that our LLM-designed reward functions are able to rival or even surpass manually designed reward functions, highlighting the efficacy and applicability of our approach. University of Alberta | Publication | 2024-02-19 | Jiayang Song, Zhehua Zhou, "Jiawei Liu", "Chunrong Fang", Shu, Z., Lei Ma |
Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark and Case Study for Robotics ManipulationAs a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes, indicating its potential to act as a universal interface between the cyber and the physical worlds. Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance. However, the inherent challenge of explaining AI components introduces uncertainty and unreliability to these AI-enabled robotics systems, necessitating a reliable development platform for system design and performance assessment. As a foundational step towards building reliable AI-enabled robotics systems, we propose a public industrial benchmark for robotics manipulation in this paper. It leverages NVIDIA Omniverse Isaac Sim as the simulation platform, encompassing eight representative manipulation tasks and multiple AI software controllers. An extensive evaluation is conducted to analyze the performance of AI controllers in solving robotics manipulation tasks, enabling a thorough understanding of their effectiveness. To further demonstrate the applicability of our benchmark, we develop a falsification framework that is compatible with physical simulators and OpenAI Gym environments. This framework bridges the gap between traditional testing methods and modern physics engine-based simulations. The effectiveness of different optimization methods in falsifying AI-enabled robotics manipulation with physical simulators is examined via a falsification test. Our work not only establishes a foundation for the design and development of AI-enabled robotics systems but also provides practical experience and guidance to practitioners in this field, promoting further research in this critical academic and industrial domain. University of Alberta | Publication | 2024-01-04 | Zhehua Zhou, Jiayang Song, Xuan Xie, Shu, Z., Lei Ma, "Dikai Liu", "Jianxiong Yin", "Simon See" |
When Cyber-Physical Systems Meet AI: A Benchmark, an Evaluation, and a Way ForwardCyber-physical systems (CPS) have been broadly deployed in safety-critical domains, such as automotive systems, avionics, medical devices, etc. In recent years, Artificial Intelligence (AI) has been increasingly adopted to control CPS. Despite the popularity of AI-enabled CPS, few benchmarks are publicly available. There is also a lack of deep understanding on the performance and reliability of AI-enabled CPS across different industrial domains. To bridge this gap, we initiate to create a public benchmark of industry-level CPS in seven domains and build AI controllers for them via state-of-the-art deep reinforcement learning (DRL) methods. Based on that, we further perform a systematic evaluation of these AI-enabled systems with their traditional counterparts to identify the current challenges and explore future opportunities. Our key findings include (1) AI controllers do not always outperform traditional controllers, (2) existing CPS testing techniques (falsification, specifically) fall short of analyzing AI-enabled CPS, and (3) building a hybrid system that strategically combines and switches between AI controllers and traditional controllers can achieve better performance across different domains. Our results highlight the need for new testing techniques for AI-enabled CPS and the need for more investigations into hybrid CPS systems to achieve optimal performance and reliability.
| Publication | 2022-05-08 | Jiayang Song, "Deyun Lyu", "Zhenya Zhang", "Zhijie Wang", "Tianyi Zhang", Lei Ma |